--- title: "Using the robsel package" #output: rmarkdown::html_vignette output: pdf_document vignette: > %\VignetteIndexEntry{Using RobSel} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` This vignette illustrate the basic usage of the `robsel` package to estimate of the regularization parameter for Graphical Lasso. ## Data We use a 100-by-5 matrix from generate from normal distribution. ```{r} x <- matrix(rnorm(100*5),ncol=5) ``` ## Using `robsel` functions ### Estimate of the regularization parameter for Graphical Lasso The function `robsel` estimates $\lambda$, a regularization parameter for Graphical Lasso at a prespecified confidence level $\alpha$. ```{r} library(robsel) lambda <- robsel(x) lambda ``` ### Graphical Lasso algorithm with $\lambda$ from Robust Selection The function `robsel.glasso` returns estimates a sparse inverse covariance matrix using Graphical Lasso with regularization parameter estimated from Robust Selection ```{r} A <- robsel.glasso(x) A ``` ### Use RobSel with multiple prespecified confidence levels We can use multiple $\alpha$ simultaneously with Robust Selection ```{r} alphas <- c(0.1, 0.5, 0.9) lambdas <- robsel(x, alphas) lambdas ``` ```{r} robsel.fits <- robsel.glasso(x, alphas) robsel.fits ```